Highly efficient relief diffraction gratings inscribed on a chalcogenide bulk glass by a femtosecond laser
نویسندگان
چکیده
Direct laser writing has been already demonstrated for the fabrication of under surface “buried” 3D mid-IR waveguides in chalcogenide glasses by employing a large photo-induced refractive index change in the features formed in the path of the focused beam from a short pulse laser. In this paper, we report on direct laser writing of relief diffraction gratings with periods of 6, 14 and 24 μm into the surface of Ge15Ga3Sb12S70 chalcogenide glass by using a 800 nm Ti:saphire femtosecond pulse laser. The first order diffraction efficiency of the fabricated gratings was over 60 % at 650 nm. We have also fabricated a “composite” grating composed of three relief diffraction gratings inscribed in the same position, but with a mutual tilt. Composite grating provided complex multidirectional diffraction of the light in the accordance with geometrical arrangement and grating period of all the gratings inscribed. The fabrication was implemented on a computer controlled stage employing surface-to-beam alignment, laser power and raster pattern control. Pulse energies of 1.5, 3.0 and 4.5 μJ were used, resulting in channel widths of around 4, 5 and 6 μm, respectively, and depths up to 1.7 μm. We propose practical applications including surface relief diffraction micro-gratings at the ends of multimode chalcogenide optical waveguides or on the surfaces of bare core optical fibers used for chemical sensing.
منابع مشابه
Nanoindentation studies on waveguides inscribed in chalcogenide glasses using ultrafast laser
Optical straight waveguides are inscribed in GeGaS and GeGaSSb glasses using a high repetition-rate sub-picosecond laser. The mechanical properties of the glasses in the inscribed regions, which have undergone photo induced changes, have been evaluated by using the nanoindentation technique. Results show that the hardness and elastic modulus of the photo-modified glasses are significantly lower...
متن کاملThermal properties of fiber Bragg gratings inscribed point-by-point by an infrared femtosecond laser
Direct, point-by-point inscription of fiber Bragg gratings by infrared femtosecond laser had been recently reported. Response of these gratings to annealing at temperatures in range 500C to 1050C is studied for the first time. Gratings inscribed by infrared femtosecond lasers were thermally stable at temperatures up to 900C, representing a significant improvement in comparison with the “common”...
متن کاملUltrafast laser written active devices
Direct-write optical waveguide device fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics at the present time. Devices such as buried waveguides, power splitters, couplers, gratings, optical amplifiers and laser oscillators have all been demonstrated. This paper reviews the application of the femtosecond laser direct-write t...
متن کاملNovel fibre laser sources based on point-by-point femtosecond laser inscribed fibre Bragg gratings
Like any other laser, a fibre laser consists of an active medium (in this case a piece of doped optical fibre) between two feedback elements. While Fresnel reflection from the fibre end facet can assume the role of a broadband partially reflecting output coupler, fibre Bragg gratings (FBGs) are an obvious choice for the implementation of a frequency selective high reflector in an all-fibre desi...
متن کاملUltrafast laser fabrication of Bragg waveguides in chalcogenide glass.
Bragg waveguides are fundamental components in photonic integrated circuits and are particularly interesting for mid-IR applications in high index, highly nonlinear materials. In this work, we present Bragg waveguides fabricated in bulk chalcogenide glass using an ultrafast laser. Waveguides with near circularly symmetric cross sections and low propagation loss are obtained through spatial and ...
متن کامل